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1 Introduction and objectives 
The European Health Data Space (EHDS) establishes a common syntactic framework 
for cross-border data exchange, centred on formats such as HL7 FHIR®, DICOM, and 
HL7 CDA. While this regulatory shift provides a necessary foundation, it does not in itself 
resolve the deeper challenge of ensuring consistent semantic meaning across 
heterogeneous health data. This challenge has long been recognised: already in the 
1960s, Dr. Lawrence L. Weed argued that the field of medicine was limited not by a lack 
of knowledge, but by the absence of structured, standardised representations of clinical 
problems and observations.1 Today, many health systems still rely on a fragmented mix 
of terminologies, locally defined codes, and variable documentation practices. As a result, 
the availability of structured, high-quality data remains uneven, and large parts of the 
clinical record are still produced as unstructured text. In this working paper, artificial 
intelligence (AI) is considered primarily as a tool for enhancing technical and semantic 
interoperability – e.g., automated structuring, coding, mapping, and validation – not as a 
general enabler of clinical decision support2.  

Most current tools addressing these gaps – such as terminology services, rules-based 
extract-transform-load (ETL) engines, and native-to-FHIR® converters – are non-AI and 
require substantial human configuration. They improve syntactic alignment but only 
partially address semantic variability because of the complexity of clinical modelling and 
syntax. At the same time, rapid advances in AI, particularly in natural language processing 
(NLP), speech recognition, and image understanding, are creating new opportunities to 
automate structuring, coding, and validation of clinical data. These technologies can 
simplify data workflows and increase the availability of semantically consistent, 
computable health data when combined with appropriate human oversight and 
organisational governance. AI automates parts of structuring, but semantic quality 
ultimately emerges from the interaction between tools, trained professionals, and coherent 
governance processes. 

The aim of this working paper is to examine how AI and related tools can complement 
the EHDS agenda by strengthening the semantic layer and accelerating the production 
of reliable, structured data. The analysis draws on scientific literature, insights from 
implementers involved in EHDS-related projects (including Xt-EHR3, 

 
1 Weed, L. L. (1968). Medical records that guide and teach. N Engl J Med, 278(11), 593-600. 
www.taylorfrancis.com/chapters/edit/10.1201/b17819-8/medical-records-guide-teach-lawrence-weed  
2 This challenge is the subject of another EHTEL working paper: “How can EHR system clinical users make 
the best of algorithm-based tools?” released in parallel to this paper. 
3 https://www.xt-ehr.eu/  

https://www.taylorfrancis.com/chapters/edit/10.1201/b17819-8/medical-records-guide-teach-lawrence-weed
https://www.xt-ehr.eu/
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myHealth@myHands4, xShare5, i2X6 and XiA7), and on ongoing implementation 
experiences (i.e., implementer perspectives). 

The paper also formulates provisional recommendations and discussion points 
(questions for debate). Given the fast pace of AI evolution, EHDS implementation 
strategies must remain valid even as AI systems become capable of automating tasks 
traditionally carried out manually; however, their safe integration depends on building 
adequate capacity, maintaining human validation, and having organisational structures 
that preserve semantic integrity. Understanding this trajectory is essential to avoid 
policies that may become rapidly outdated or that constrain innovation in areas where 
automation may soon outperform manual processes, while still ensuring fit and integration 
into organisations and social value frameworks. 

2 Understanding the challenge: Syntax and semantics in the 
EHDS era 

An exploration follows of the relevant literature and various implementer-related 
challenges to help understand the challenge of what may happen to semantics and 
syntax in the upcoming EHDS era. 

2.1 What does the literature say 
The literature consistently shows that syntactic interoperability – ensuring data are 
exchanged in formats such as HL7 FHIR® or CDA – solves only a small part of the 
interoperability problem. Even when systems exchange structurally valid resources, 
semantic interoperability remains fragile because meaning, context, and standardised 
terminology use are highly inconsistent across organisations and countries. Studies 
emphasise that the “unbroken chain” of meaning often breaks at the point(s) of coding, 
classification, or metadata definition, leading to data that is technically shareable but 
operationally unusable for clinical, public health, or research purposes.8 

Recent systematic reviews highlight that semantic misalignment persists even in settings 
where FHIR® is implemented. Variability in terminology adoption (e.g., SNOMED CT, 
LOINC, ICD-10), local coding conventions, and profile extensions routinely undermine the 

 
4 https://myhealthmyhands.eu/  
5 https://xshare-project.eu/  
6 https://www.uphillhealth.com/i2x  
7 https://xia-project.iscte-iul.pt/  
8 Facile R. et al. (2025). “Standards in sync: five principles to achieve semantic interoperability for TRUE 
research for healthcare.” Front. Digit. Health. https://doi.org/10.3389/fdgth.2025.1567624  

https://myhealthmyhands.eu/
https://xshare-project.eu/
https://www.uphillhealth.com/i2x
https://xia-project.iscte-iul.pt/
https://doi.org/10.3389/fdgth.2025.1567624
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utility of exchanged data.9,10 A classic example comes from laboratory data: despite 
shared use of LOINC identifiers, institutions still differ in units, acronyms, and result 
expressions, requiring extensive synonym tables and manual conversion.11 Such findings 
confirm that syntax alone cannot compensate for heterogeneity in underlying semantic 
practices. 

Technically, several factors drive these gaps: uneven uptake of standard vocabularies, 
lack of governance to synchronise terminology use across FHIR® profiles, incomplete or 
unstable mappings between coding systems, and the absence of robust metadata 
standards.12 Contextual information – such as units, provenance, or clinical intention – is 
often missing, further limiting semantic clarity. These issues reduce data quality by 
harming correctness, completeness, conformance, and consistency across systems.13 

The consequences are visible in both clinical workflows and secondary use. Semantic 
inconsistencies introduce inefficiencies, manual reconciliation, and potential 
misinterpretation during care transitions, referrals, or medication reconciliation. They also 
degrade the reliability of aggregated datasets and complicate AI development, as 
heterogeneous coding inflates noise and forces extensive preprocessing.14 Ontology-
driven approaches can mitigate this, but they require technical capability and coordinated 
governance that remain uneven across Europe. 

In effect, semantic misalignment becomes a hard ceiling on Europe’s capacity to scale 
personalised care. Strengthening semantic interoperability therefore does not only support 
administrative harmonisation; it is a precondition for delivering equitable and evidence-
based personalised medicine across the European Health Union. 

2.2 Challenges from the field: Implementer perspective 
Experiences from hospitals, national authorities, and European Union (EU)-funded 
projects show that the main challenge in EHDS implementation is not the adoption of 
standards such as FHIR® or CDA, but the persistent variability in how clinical concepts 
are documented, coded, and interpreted because international standards allow variations 

 
9 Amar F. et al. (2024). “Electronic Health Record and Semantic Issues Using FHIR: Systematic Mapping 
Review.” JMIR. https://doi.org/10.2196/45209  
10 Ambalavanan R. et al. (2025). “Challenges and strategies in building a foundational digital health data 
integration ecosystem: a systematic review and thematic synthesis.” Front. Digit. Health. 
https://doi.org/10.3389/frhs.2025.1600689 
11 Lin M-C. et al. (2011). “Investigating the semantic interoperability of laboratory data exchanged using 
LOINC codes.” AMIA Proc. https://pubmed.ncbi.nlm.nih.gov/22195138/ 
12 Palojoki S. et al. (2024). “Semantic Interoperability of Electronic Health Records.” JMIR Med Inform. 
https://doi.org/10.2196/53535 
13 Wu Y. et al. (2025). “Semantics-driven improvements in electronic health records data quality.” BMC 
Med Inform Decis Mak. https://doi.org/10.1186/s12911-025-03146-w 
14 Ambalavanan R. (2025). “Ontologies as the semantic bridge between artificial intelligence and 
healthcare”. Front. Digit. Health. https://doi.org/10.3389/fdgth.2025.1668385 

https://doi.org/10.2196/45209
https://doi.org/10.3389/frhs.2025.1600689
https://pubmed.ncbi.nlm.nih.gov/22195138/
https://doi.org/10.2196/53535
https://doi.org/10.1186/s12911-025-03146-w
https://doi.org/10.3389/fdgth.2025.1668385
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and optionality. Pilot sites repeatedly report that syntactic compliance can be achieved 
through incremental upgrades or middleware, while semantic alignment requires multi-
stakeholders' involvement, co-creation processes, organisational commitment, new 
competencies, and sustained clinical involvement. 

Projects such as Trillium II15 demonstrated that even well-defined artefacts, like the 
International Patient Summary, require intensive work on terminology mappings and 
clinical agreement. XpanDH16 and xShare further confirmed that the current state of local 
data models, legacy systems, and inconsistent coding across specialties may limit the 
reuse of data for structuring, coding, validation, and any downstream reuse. 
Implementation sites point to the gap between nominal syntactic conformity and the actual 
usability of data for automated semantic processing, quality assurance, and compliant 
data exchange. 

A key lesson is that semantic standardisation cannot be outsourced to technical teams 
alone: instead, it emerges from AI-assisted tooling, continuous human expertise, and 
stable organisational governance acting together. Sites that succeed treat semantic 
interoperability as a co-produced, co-created outcome: where AI suggests and 
accelerates, professionals curate and validate, and governance structures maintain 
coherence over time. Smaller providers often lack this capacity, and rely on manual coding 
or partial mappings, leading to heterogeneous outcomes even when using the same 
standards. Across initiatives, implementers agree that syntax is only the visible layer of 
interoperability. Value emerges when data carry consistent meaning, and this depends on 
governance, clinical buy-in, and the availability of robust semantic tooling – not only on 
regulatory compliance.  

To contribute to this improvement, the Xt-EHR joint action is developing a logical, vendor-
neutral semantic model built on HL7 FHIR® resources and data obligations, designed 
to support semantic interoperability across heterogeneous electronic health record (EHR) 
systems17. 

3 Existing tools for structuring and coding health data 
An exploration of the relevant literature and various implementer-related challenges helps 
to understand what tools can be used to structure and code health data. 

 
15 https://cordis.europa.eu/project/id/727745/results  
16 https://cordis.europa.eu/project/id/727745/results  
17 https://www.xt-ehr.eu/artifacts-logicalmodels/  

https://cordis.europa.eu/project/id/727745/results
https://cordis.europa.eu/project/id/727745/results
https://www.xt-ehr.eu/artifacts-logicalmodels/
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3.1 What does the literature say 
Literature reviews show that NLP and AI advances and the potential for supporting 
automated structuring and coding of health data for EEHRxF implementation, while they 
highlight the opportunities, limitations, and governance risks that arise when semantic 
quality and oversight are insufficient. 

3.1.1 From rule-based systems to GenAI 
NLP and AI techniques have for many years been applied to clinical text, from simple 
keyword extraction to sophisticated named-entity recognition and concept normalisation18. 
Traditionally, many systems rely on rules and lexicons tailored to specific institutions or 
languages, which limits their portability and requires intensive maintenance19. 

The arrival of transformer architectures and large language models (LLMs) has 
fundamentally changed this landscape20, 21,22. Foundation models pre-trained on vast 
corpora can be adapted to clinical tasks with relatively modest amounts of fine-tuning of 
data and can handle a range of tasks including information extraction, semantic 
normalisation, and conversion of free text into structured, coded representations23,24.  

When combined with domain ontologies, terminologies and structured templates (e.g., 
HL7 FHIR® Resources), such models promise to support semi-automated structuring of 
clinical documents into coded data25. 

 
18 Chowdhary, K.R. “Natural Language Processing,” Fundamentals of Artificial Intelligence, pp. 603–649, 
2020, https://doi.org/10.1007/978-81-322-3972-7_19   
19 de Mello B.H. et al., “Semantic interoperability in health records standards: a systematic literature 
review,” Health Technol (Berl), vol. 12, no. 2, pp. 255–272, Jan. 2022, https://doi.org/10.1007/S12553-022-
00639-W  
20 Yoon D. et al., “Redefining Health Care Data Interoperability: Empirical Exploration of Large Language 
Models in Information Exchange,” J Med Internet Res 2024;26:e56614 
https://www.jmir.org/2024/1/e56614 vol. 26, no. 1, p. e56614, May 2024, https://doi.org/10.2196/56614  
21 Singhal K. et al., “Large language models encode clinical knowledge,” Nature 2023 620:7972, vol. 620, 
no. 7972, pp. 172–180, Jul. 2023, https://doi.org/10.1038/s41586-023-06291-2   
22 Harnoune A., M. Rhanoui, M. Mikram, S. Yousfi, Z. Elkaimbillah, and B. El Asri, “BERT Based Clinical 
Knowledge Extraction for Biomedical Knowledge Graph Construction and Analysis,” Computer Methods 
and Programs in Biomedicine Update, vol. 1, Apr. 2023, https://doi.org/10.1016/j.cmpbup.2021.100042  
23 Van Veen D. et al., “Clinical Text Summarization: Adapting Large Language Models Can Outperform 
Human Experts,” Res Sq, Oct. 2023, https://doi.org/10.21203/RS.3.RS-3483777/V1  
24 Builtjes L., J. Bosma, M. Prokop, B. van Ginneken, and A. Hering, “Leveraging open-source large 
language models for clinical information extraction in resource-constrained settings,” JAMIA Open, vol. 8, 
no. 5, Sep. 2025, https://doi.org/10.1093/JAMIAOPEN/OOAF109  
25 Riquelme Tornel Á., P. Costa Del Amo, and C. Martínez Costa, “Large Language Models for Automating 
Clinical Data Standardization: HL7 FHIR Use Case,” Jul. 2025, Accessed: Nov. 27, 2025. [Online]. 
Available: https://arxiv.org/abs/2507.03067v1  

https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/S12553-022-00639-W
https://doi.org/10.1007/S12553-022-00639-W
https://www.jmir.org/2024/1/e56614
https://doi.org/10.2196/56614
https://doi.org/10.1038/s41586-023-06291-2
https://doi.org/10.1016/j.cmpbup.2021.100042
https://doi.org/10.21203/RS.3.RS-3483777/V1
https://doi.org/10.1093/JAMIAOPEN/OOAF109
https://arxiv.org/abs/2507.03067v1
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3.1.2 Opportunities and risks for EEHRxF implementation 
AI-supported structuring of health data offers clear opportunities for EEHRxF 
implementation. First, it could accelerate the population of EEHRxF-compliant records 
from existing unstructured data, reducing manual burdens for clinicians and health 
information departments. Second, it may facilitate adoption of common standards by 
providing tooling that integrates into documentation workflows rather than requiring 
separate coding efforts. Third, it can support secondary use of data by producing 
structured datasets that are more amenable to analytics and research. However, 
implementers emphasise that AI’s value depends on the presence of trained professionals 
who can supervise coding decisions, and on organisational governance that maintains 
terminology, mappings, and workflows. 

Continuity of care across primary care, hospitals, rehabilitation, and chronic disease 
follow-up relies on coherent, interpretable, and longitudinal patient data. Once semantic 
consistency is ensured, AI tools can also assist continuity of care – e.g., by generating 
structured summaries, reconciling medications, or surfacing missing follow-up events. 
These functions rely entirely on the semantic layer and are only possible once automated 
structuring and coding have been achieved. AI cannot reliably summarise what is 
inconsistently coded, incomplete, or semantically ambiguous. Strengthening semantic 
interoperability therefore directly strengthens AI’s capacity to support safe, uninterrupted 
care pathways. 

At the same time, AI introduces new risks and concerns that cannot be ignored: 

• Accuracy and bias. Errors in extraction or coding may be propagated through 
semantic processing, quality assurance, and subsequently into clinical or analytical 
uses. If models are trained on biased or unrepresentative data, they may perform 
poorly for minority populations or less common languages, exacerbating digital 
health inequities26. 

• Opacity and trust. Stakeholders already express concerns about digital health 
tools compromising established professional roles, patient-clinician relationships, 
and data security27. Introducing AI systems that are not transparent or explainable 
may further erode trust. 

• Governance and accountability. It is unclear how responsibility should be 
allocated when AI-generated structuring leads to errors in cross-border EHR 

 
26 Hasanzadeh F., C. B. Josephson, G. Waters, D. Adedinsewo, Z. Azizi, and J. A. White, “Bias recognition 
and mitigation strategies in artificial intelligence healthcare applications,” npj Digital Medicine 2025 8:1, 
vol. 8, no. 1, pp. 154-, Mar. 2025, https://doi.org/10.1038/s41746-025-01503-7  
27 Hogg H. D. J. et al., “Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: 
Systematic Review of Qualitative Evidence,” J Med Internet Res, vol. 25, 2023, p. e39742, 2023, 
https://doi.org/10.2196/39742  

https://doi.org/10.1038/s41746-025-01503-7
https://doi.org/10.2196/39742
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exchange28,29. Governance models for digital health emphasise co-creation and 
public value but have yet to fully internalise the implications of AI-driven data 
processing30. 

Recent large-scale transformer models trained on longitudinal population health records 
provide strong empirical evidence that AI systems amplify the semantic and data-quality 
characteristics of the data they process. Shmatko and colleagues31 show that models 
trained on standardised diagnostic codes (ICD-10) learn not only clinical patterns but also 
inconsistencies in coding practices, “missingness”, and data-source bias, which directly 
shape model outputs. This demonstrates that AI does not automatically compensate for 
weak semantic interoperability; rather, it operationalises existing semantic fragmentation 
at scale. These findings reinforce the need to prioritise semantic consistency, provenance, 
and quality assurance upstream, before AI-assisted structuring, coding, or reuse can be 
considered reliable in the EHDS context.  

In short, AI is both a potential enabler and a potential source of new governance problems. 
The challenge is to understand, in a structured and evidence-based way, what current AI 
research can realistically offer to EEHRxF implementation across the priority data 
domains, and where significant gaps remain. 

3.2 Implementer perspective 
Experiences from hospitals, national programmes, and EU-funded projects indicate that 
the maturity of tools for structuring, coding, and converting health data varies widely across 
categories. Commercial solutions – particularly speech-to-text, clinical NLP, and text-to-
code engines – are the most mature, with several vendors offering integrated modules 
embedded in EHR workflows. These systems perform reliably for transcription and basic 
semantic extraction tasks, but implementers repeatedly highlight limits in domain 
specificity, multilingual coverage, and the stability of automated coding across clinical 
contexts. Accuracy often drops when confronted with local documentation styles, 

 
28 Rowland S. P., J. E. Fitzgerald, M. Lungren, E. (Hsieh) Lee, Z. Harned, and A. H. McGregor, “Digital health 
technology-specific risks for medical malpractice liability,” npj Digital Medicine 2022 5:1, vol. 5, no. 1, pp. 
157-, Oct. 2022, https://doi.org/10.1038/s41746-022-00698-3  
29 Nouis S. C. E., V. Uren, and S. Jariwala, “Evaluating accountability, transparency, and bias in AI-assisted 
healthcare decision- making: a qualitative study of healthcare professionals’ perspectives in the UK,” 
BMC Med Ethics, vol. 26, no. 1, pp. 89-, Dec. 2025, https://doi.org/10.1186/S12910-025-01243-
Z/TABLES/4  
30 Lewerenz S., A. Moen, and H. Martins, “Public value and digital health: The example of guiding values in 
the national digital health strategy of France,” Int J Med Inform, vol. 196, p. 105794, 2025, 
https://doi.org/10.1016/j.ijmedinf.2025.105794  
31 Shmatko, A., Jung, A.W., Gaurav, K. et al. Learning the natural history of human disease with generative 
transformers. Nature 647, 248–256 (2025), https://doi.org/10.1038/s41586-025-09529-3  

https://doi.org/10.1038/s41746-022-00698-3
https://doi.org/10.1186/S12910-025-01243-Z/TABLES/4
https://doi.org/10.1186/S12910-025-01243-Z/TABLES/4
https://doi.org/10.1016/j.ijmedinf.2025.105794
https://doi.org/10.1038/s41586-025-09529-3
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abbreviations, or specialty-specific terminology, requiring manual validation and ongoing 
configuration. 

Open-source tools show strong innovation – especially around FHIR® conversion, 
terminology services, and rule-based extract-transform-load (ETL) pipelines – but their 
deployment still requires significant in-house technical capacity. Hospitals report good 
results with FHIR® converters for structured modules (e.g., for labs, medications) yet note 
persistent constraints when processing unstructured text or mapping heterogeneous 
legacy codes. Terminology servers (e.g., SNOMED-enabled services) are seen as 
essential enablers, but smaller providers often lack the expertise to maintain them 
effectively. 

Research prototypes in NLP, image-to-code models, and multimodal AI provide 
promising results in controlled environments, particularly for extracting key clinical 
concepts or generating structured outputs aligned with FHIR® resources. However, most 
remain difficult to operationalise at scale. Issues include limited explainability, unstable 
performance across sites, and the absence of robust benchmarking datasets representing 
European languages and documentation traditions. Implementers caution that such tools 
can be valuable for pre-processing and quality assurance but are not yet dependable for 
fully autonomous coding in routine care. 

Across all categories, implementers consistently observe that AI tools alone cannot secure 
semantic quality: meaningful outputs arise only when automated extraction is 
complemented by trained professionals and by organisations with mature terminology 
governance, quality monitoring, and workflow alignment. Even high-performing systems 
struggle when upstream workflows are inconsistent or when semantic standards are only 
partially implemented. This reinforces the need for mixed approaches – combining 
automation with clinician oversight – and for strong governance to ensure that AI-
generated or AI-assisted structured data remains clinically trustworthy. 

Twelve examples of tools that are currently available are: 

• Apelon DTS / Apelon Semantic Platform32 providing machine learning-assisted 
terminology mapping and normalisation, code system alignment (SNOMED, 
LOINC, ICD), semantic normalisation pipelines, FHIR integration, and more.  

• AWS HealthLake33 provides a comprehensive data infrastructure for healthcare 
applications, advanced analytics, machine-learning models, and generative AI 
innovations, while maintaining enterprise-grade security and eliminating 
infrastructure management overhead.  

 
32 See https://apelon-dts.sourceforge.net/ 
33 See https://aws.amazon.com/healthlake/  

https://apelon-dts.sourceforge.net/
https://aws.amazon.com/healthlake/
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• cTAKES / MedCAT / spaCy-Clinical research initiatives34 
• eHealthPassTM 35 is a remote patient management platform, a personal health 

records, a digital therapeutics solution that incorporates LLMs and other AI 
algorithms to promote quality enabled treatment and prevention. It incorporates 
smart ChatBots, openAI tools and more to streamline patient-clinician 
collaboration. 

• FHIR Workbench and LLM-based evaluation tools36 is a large language model 
(LLM)-based reasoning over FHIR® resources tool. FHIR®-Workbench provides 
standardised benchmarks to evaluate LLM performance on healthcare 
interoperability tasks. 

• IHE’s Gazelle37 tests tools automation and undertakes model-based validation of 
FHIR®  documents. IHE Gazelle is an open-source interoperability testing platform 
central to IHE Connectathons, Projectathons and Plugathons, providing tools for 
validating healthcare systems, including robust support for HL7 FHIR® validation 
through integrated components. One example is Matchbox, which uses official 
validators (like HAPI FHIR and IHE profiles) to check FHIR® message 
conformance, structure, and adherence to specific implementation guides, crucial 
for ensuring that data exchange standards are met in national and international 
health initiatives. 

• IQVIA Patient Experience Platform38 is a next-generation digital solution that 
reimagines how patients engage with support programmes throughout their 
treatment journey. It addresses long-standing challenges in patient support – 
including low engagement, poor adherence, and fragmented digital ecosystems – 
by delivering personalised, behaviourally informed experiences powered by real-
world data. Built on a secure, compliant infrastructure, IQVIA Patient Experience 
(PX) Platform integrates with wearables, EHRs, and case management systems to 
enable real-time interventions and outcome tracking. With capabilities spanning 
onboarding, adherence support, and evidence generation, it empowers patients 
and providers to drive measurable improvements in satisfaction, persistence, and 
health outcomes. 

 
34 See https://arxiv.org/html/2508.02556v1; https://www.researchgate.net/figure/Step-by-step-
implementation-of-clinical-natural-language-processing-NLP-pipeline-Step_fig1_370154080; 
https://medcat.readthedocs.io/en/latest/autoapi/medcat/meta_cat/; https://nuchange.ca/2020/04/nlp-
for-clinical-notes-tools-and-techniques.html 
35 See https://ehealthpass.eu/  
36 See https://github.com/UMEssen/FHIR-Workbench 
37 See https://ihe-catalyst.net/test-system-gazelle/ 
38 See https://www.iqvia.com/solutions/commercialization/commercial-engagement-services/iqvia-
patient-experience-platform 

https://arxiv.org/html/2508.02556v1
https://www.researchgate.net/figure/Step-by-step-implementation-of-clinical-natural-language-processing-NLP-pipeline-Step_fig1_370154080
https://www.researchgate.net/figure/Step-by-step-implementation-of-clinical-natural-language-processing-NLP-pipeline-Step_fig1_370154080
https://medcat.readthedocs.io/en/latest/autoapi/medcat/meta_cat/
https://nuchange.ca/2020/04/nlp-for-clinical-notes-tools-and-techniques.html
https://nuchange.ca/2020/04/nlp-for-clinical-notes-tools-and-techniques.html
https://ehealthpass.eu/
https://github.com/UMEssen/FHIR-Workbench
https://ihe-catalyst.net/test-system-gazelle/
https://www.iqvia.com/solutions/commercialization/commercial-engagement-services/iqvia-patient-experience-platform
https://www.iqvia.com/solutions/commercialization/commercial-engagement-services/iqvia-patient-experience-platform
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• InterSystems IRIS for Health39, with machine learning services, is a 
comprehensive, cloud-first digital health development platform that provides all the 
building blocks needed to work with any healthcare data standard, including HL7 

FHIR® . 
• OHDSI / OMOP AI Harmonisation Tools40 OHDSI offers a wide range of open-

source tools to support various data-analytics use cases on an observational 
patient-level data. What these tools have in common is that they can all interact 
with one or more databases using the Common Data Model (CDM). Furthermore, 
these tools standardise the analytics for various use cases. 

• Ontoserver41 is a next-gen FHIR®  terminology server developed by the Australian 
e-Health Research Centre, CSIRO, providing semi-automated mapping and 
terminology services. 

• Snowstorm42 are SNOMED CT and terminology-centric AI Tools providing 
assisted mapping, terminology maintenance, and semantic validation. 

• Text2Node43 is a cross-domain mapping system capable of mapping medical 
phrases to concepts in large taxonomies (such as SNOMED CT). The system is 
designed to generalise from a limited set of training samples and to map phrases 
to elements of the taxonomy that are not covered by training data. 

AI tools for semantic interoperability are already deployed in terminology services, 
FHIR® platforms, and national EHR infrastructures, while AI-assisted conformance testing 
and cross-border semantic mediation are transitioning from advanced prototypes to 
operational pilots. In the current EHDS era, AI acts as an accelerator for standards-based 
interoperability, and not as a replacement for HL7 FHIR®, EEHRxF, or governance 
frameworks. 

4 Organisational, human, and other enablers of 
interoperability 

Semantic interoperability is not produced by tools alone. It emerges from the combined 
action of AI systems capable of automating structuring and coding; professionals who 
validate, correct, and refine semantic representations; and organisations that maintain the 
governance structures, terminology services, and cultural conditions needed for 
consistency over time. This tripartite interaction i.e., tools plus people, governance, and 

 
39 See https://www.intersystems.com/products/intersystems-iris-for-health/ 
40 See https://www.ohdsi.org/software-tools/ 
41 See https://www.ontoserver.csiro.au/site/ 
42 See https://github.com/IHTSDO/snowstorm 
43 See https://arxiv.org/abs/1905.01958 

https://www.intersystems.com/products/intersystems-iris-for-health/
https://www.ohdsi.org/software-tools/
https://www.ontoserver.csiro.au/site/
https://github.com/IHTSDO/snowstorm
https://arxiv.org/abs/1905.01958
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consensus44 – forms the operational backbone of semantic interoperability in the EHDS 
era. 

4.1 What does the literature say 
The literature identifies several inter-linked domains critical to semantic interoperabil ity: 
organisational readiness, governance and leadership, human-AI collaboration, and 
professional culture. Across studies, one finding is consistent: semantic interoperabi lity 
emerges when automation, human expertise, and organisational governance reinforce 
each other. None of these components is sufficient on its own. 

4.1.1 Organisational readiness 
Readiness for digital health interoperability requires more than just technical infrastructure. 
For example, de Mello et al. found that semantic interoperability is hindered by weak 
organisational arrangements around terminology governance, mapping services and 
interdisciplinary coordination.45 Organisational models typically emphasise leadership 
buy-in, stakeholder alignment, training, resource allocation, and change management.46 
Readiness frameworks for AI and digital health emphasise that without process 
alignment, workforce capability and executive sponsorship, investments in interoperabi lity 
yield limited returns.47 

4.1.2 Governance and leadership models 
Good governance is consistently cited as a pre-condition for semantic interoperabil ity. 
Clear accountability for terminology adoption, data stewardship, version control, and 
mapping responsibilities is required. In the context of AI and data reuse, emerging 
governance frameworks emphasise transparency, data ethics, stakeholder engagement 
and continuous monitoring of algorithms.48 In the context of the EHDS, Hussein et al note 
that, even with shared technical specifications, variable governance across countries 
undermines reuse and secondary use of data. Integrating the Healthcare Enterprise (IHE) 
has provided a use case-based methodology to implement a National eHealth 

 
44 This interaction can also be referred to as tools + people + governance + consensus. 
45 de Mello BH, et al. “Semantic interoperability in health records standards.” BMC Med Inform Decis Mak. 
2022. https://doi.org/10.1007/s12553-022-00639-w  
46 Babšek M, Murko E, Aristovnik A. “Organisational AI Readiness for Public Administration: A 
Comprehensive Review.” Int J Econ Bus Admin. 2025. https://doi.org/10.35808/ijeba/894  
47 Hussein R, Gyrard A, Abedian S, Gribbon P, Martínez S. “Interoperability Framework of the European 
Health Data Space for the Secondary Use of Data: Interactive European Interoperability Framework–
Based Standards Compliance Toolkit for AI-Driven Projects.” J Med Internet Res 2025;27:e69813 
https://doi.org/10.2196/69813  
48 Ribeiro D, Rocha T, Pinto G, et al. “Toward Effective AI Governance: A Review of Principles.” 2025. 
https://doi.org/10.48550/arXiv.2505.23417  

https://doi.org/10.1007/s12553-022-00639-w
https://doi.org/10.35808/ijeba/894
https://doi.org/10.2196/69813
https://doi.org/10.48550/arXiv.2505.23417
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Interoperability Framework.49 Hussein et al also discuss the challenges of properly 
implementing interoperability standards for secondary use of data. 

4.1.3 Human-AI collaboration and professional culture 
Semantic interoperability initiatives invariably require collaboration between clinicians, 
informaticians, terminologists, and IT software architects and developers. The literature 
on human-AI collaboration observes that successful models embed AI as a partner in 
semantic processes – suggesting codes, identifying gaps, and assisting validation – rather 
than replacing human judgement.50 Professional culture plays a major role: data-capture 
behaviour, coding discipline, terminology uptake, and willingness to engage with 
structured workflows vary widely across specialties and institutions. The inertia of 
clinicians to change documentation habits, combined with perceived burden and limited 
immediate benefit, remains a recurring barrier. 

4.1.4 In summary 
Achieving semantic interoperability is as much an organisational and cultural challenge 
as a technical one. Without readiness (resources, skills, processes), governance 
(terminology services, data stewardship) and a culture aligned with structured, reusable 
data workflows, even well-specified syntactic frameworks (e.g., FHIR®) will under-deliver. 
The literature thus points to the need for an integrated socio-technical approach: tools, 
governance, workforce, and culture must evolve in concert. 

4.2 Implementer perspective 
Implementers across hospitals, regional systems and national authorities report that 
semantic interoperability fails not because of technical shortcomings alone, but because 
organisational and human processes remain uneven.  

Implementers emphasise that AI can accelerate structuring only when professionals 
validate outputs and organisations maintain the semantic backbone through stable 
governance processes. Progress depends on early investment in terminology services, 
stable data-governance arrangements and cross-disciplinary teams that can maintain 
mappings and coding practices over time. Sites with centralised terminology governance 
– bringing together clinical informatics, IT, coders and quality staff – describe fewer 
inconsistencies and less semantic drift, whereas those relying on informal or fragmented 
arrangements experience recurring divergence between departments. Clinicians’ 
documentation habits remain a decisive factor because they determine the availability and 

 
49 Bourquard K. and A. Berler, “Use-Case Driven Approach for a Pragmatic Implementation of 
Interoperability in eHealth”, International Journal of Reliable and Quality E-Healthcare (IJRQEH) 6(3), IGI 
Global, 2017 Pages pp 52-62, https://doi.org/10.4018/IJRQEH.2017070104  
50 Karapanagiotis P. “Enabling interoperable human-AI teaming for automation.” Int J Hum-Comput Stud. 
2025. https://doi.org/10.1016/j.jii.2025.100962  

https://doi.org/10.4018/IJRQEH.2017070104
https://doi.org/10.1016/j.jii.2025.100962
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quality of content that automated structuring and coding tools can process. Smaller 
providers face additional asymmetries, depending heavily on vendor defaults or national 
mapping repositories, and they are lacking the capacity to manage their own terminology 
pipelines. Across settings, implementers converge on a common insight: semantic 
interoperability becomes sustainable only when governance, culture, AI-assisted 
workflows, and everyday professional practice evolve together. 

Addressing these entrenched gaps requires systematic capacity building rather than ad 
hoc training. Recent European initiatives illustrate workable models. The XiA project 
provides modular, role-specific learning pathways that build interoperability competencies 
among developers, deployers and end-users. Its structured micro-content approach 
supports consistent coding behaviour, strengthens the understanding of standards and 
terminologies, and helps embed semantic practices into routine workflows. Such 
programmes reduce variation in documentation, improve uptake of FHIR®-based profiles, 
and equip staff to work responsibly with AI-assisted structuring tools. Complementary 
efforts such as the SUSA project51 integrate interoperability and data-literacy skills into 
broader digital-skills curricula for health and social care professionals. These initiatives 
highlight that capacity building is not peripheral: without sustained, organisation-wide 
education, even well-designed semantic tools and governance models struggle to deliver 
consistent, high-quality structured data. 

Governing interoperability is a key component for successful implementation. Embedding 
interoperability across the full system lifecycle has the following benefits. It: 

• Enhances outcomes and user experience by enabling safe, seamless data 
exchange across care settings and over time. 

• Improves efficiency and reduces costs by avoiding bespoke integrations and 
unnecessary duplication, while promoting reuse of data and solutions. 

• Supports data reuse by enabling information to be captured once and used for 
multiple purposes. 

• Stimulates innovation and healthy competition – particularly benefiting small and 
medium-sized enterprises – through the adoption of open standards and 
transparent conformance mechanisms. 

• Strengthens public value by promoting transparency, accountability, and long-term 
sustainability of digital health systems. 

• Helps reduce inequities by enabling accessible, person-centred services and 
supporting cross-border cooperation. 

 
51 See SUSA. https://susacampus.eu/  

https://susacampus.eu/
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An example of a well-established national interoperability framework is the French 
eHealth Interoperability Framework52. 

5 Recommendations and questions for debate 
The analysis presented in this working paper confirms that semantic interoperability 
cannot be delivered by technology alone. It emerges from the combined action of: 

1. AI-assisted tools that automate structuring, coding, mapping, and validation. 

2. Professionals who supervise outputs, adapt documentation behaviour, and 
sustain semantic accuracy. 

3. Organisations that maintain governance, terminology services, training, and 
quality processes. 

The following recommendations consolidate all the insights outlined in previous sections 
of the working paper into five strategic clusters. The recommendations follow the principle 
that semantic interoperability is co-produced by AI tools, professional expertise, and 
organisational governance. Ensuing actions should therefore target all three dimensions 
(i.e., AI-assisted tools, professionals, and organisations) simultaneously. 

5.1 AI-assisted semantic enablement tools 
Recommendations 

Prioritise public investment in tools that directly enhance semantic 
interoperability, including: 

o Automated extraction and structuring systems able to convert free text 
into coded, EEHRxF-compliant data. 

o Terminology services and mapping engines that maintain stable links 
between local expressions and SNOMED CT, LOINC, ATC, ICD, and 
domain-specific vocabularies. 

o Multilingual and cross-lingual AI models to ensure equitable 
interoperability across all EU languages, including minority languages. 

o Quality-assurance and conformance-checking tooling that flags missing 
mandatory fields, implausible combinations, and semantic inconsistencies. 

o Transparent and auditable AI components to reduce dependency on 
opaque vendor ecosystems and allow cross-site validation. 

 
52 See https://esante.gouv.fr/produits-services/ci-sis  

https://esante.gouv.fr/produits-services/ci-sis
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Questions for debate 

1. Which classes of AI tools should receive structural EU-level support due to 
their public-good nature? 
2. What minimum benchmarking and validation frameworks are needed for AI 
tools that perform semantic tasks? 
3. How should the EHDS ensure that AI-generated semantic content remains 
traceable and auditable? 

5.2 Organisational and governance enablers 
Recommendations 

Establish robust organisational governance models that institutionalise semantic 
interoperability, including through: 

o Establishing stable terminology governance structures in organisations, 
with explicit roles for stewardship, version control, and mapping ownership. 

o Requiring semantic governance teams that combine clinical, informatics, 
terminology, and IT profiles. 

o Implementing continuous processes to detect and correct semantic drift 
across departments. 

o Promoting governance models that define shared accountability between 
AI outputs, professional oversight, and organisational processes. 

o Establishing digital health interoperability frameworks that include 
semantic task forces and the necessary testing continuum to strengthen the 
implementation processes. 

o Enabling co-creation processes involving all stakeholders at the design 
phase of digital strategies and implementation projects. 

Questions for debate 

1. Should the EHDS standard bundle include guidelines for organisational 
governance of semantics and human-AI collaboration workflows? 
2. What constitutes “semantic maturity” for organisations participating in 
EHDS data flows? 
3. How can governance models account for liability when AI tools participate 
in structuring and coding? 
4. How can AI tools enhance better testing and conformance processes 
taking into account both the EHDS regulation and the AI Act? 
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5.3 Workforce, training, and culture 
Recommendations 

Invest in sustained, role-adapted capacity-building and AI literacy programmes 
that embed semantic competencies into daily practice, incentivise high-quality 
documentation, and enable professionals to effectively supervise AI-assisted structuring 
and coding: 

o Develop sustained capacity-building programmes covering standards 
literacy, terminology, semantic quality, and AI-assisted structuring. 

o Promote role-specific, modular learning (e.g., micro-learning) that fits into 
clinical and operational workflows. 

o Support peer-to-peer and practice-integrated training models to improve 
uptake and consistency of structured documentation. 

o Strengthen AI literacy to ensure that professionals understand how 
automated coding works, when it needs verification, and what its limitations 
are. 

o Incentivise documentation behaviours that increase semantic quality – 
e.g., through demonstrable clinical value, reduced duplication, or workflow 
simplification. 

Questions for debate 

1. How can Europe scale semantic and AI literacy training without adding 
burdens to clinical staff? 
2. Which training formats (e.g., micro-learning, simulation, peer-led sessions) 
have proven most effective in healthcare settings? 
3. How can training programmes be harmonised across Beveridgian and 
Bismarckian systems while respecting local contexts? 
4. How can we make stakeholders of different backgrounds collaborate 
together and create common knowledge and capacity building? 
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5.4 Vendor collaboration and interoperability-ready systems 
Recommendations 

Strengthen market and procurement conditions to ensure vendor openness by 
mandating standards-based interoperability, enabling third-party semantic components, 
supporting shared semantic assets, and fostering experimentation through 
interoperability labs : 

o Address structural vendor lock-in by requiring EHR vendors to support 
international standards and IHE profiles, open interfaces, third-party 
semantic modules, and transparent mapping logic. 

o Encourage procurement frameworks that prioritise interoperability-ready 
systems with demonstrable semantic capabilities. 

o Organise interoperability labs to enable semantic interoperability 
experimentation to improve the standardisation and profiling processes, 
educate the vendors, enable early adopters and promote innovation into 
national and cross border digital transformation in healthcare strategies. 

o Promote shared, public repositories of semantic assets, mapping tables, 
and AI training artefacts to avoid duplication and fragmentation. 

Questions for Debate 

1. Should the EHDS introduce vendor-level obligations to ensure 
interoperability of third-party semantic tools? 
2. How can Europe develop shared “semantic commons” (terminology 
resources, multilingual datasets) that vendors must interoperate with? 
3. What would be an acceptable semantic-friendly, open interoperability 
architecture? 
4. Are the current interoperability architectures consistent enough at the 
European level to enable proper data quality and semantic maturity? 

5.5 Implications for EHDS governance 
Recommendations 

Embed semantic interoperability as a core EHDS governance objective by: 
o Positioning semantic interoperability as a governance priority in EHDS 

implementation – not merely a technical requirement. 
o Integrating AI-assisted structuring into future implementing acts, ensuring 

traceability, validation expectations, and performance monitoring. 
o Encouraging Member States to adopt national semantic governance 

frameworks, aligned with EU-wide terminology policies. 
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o Launching pan-European monitoring mechanisms for semantic quality, 
including indicators for errors, drift, completeness, and coding alignment. 

o Extending concepts and lessons learned from the MyHealth@EU initiative. 
o Enabling a use case-based model to enhance common implementation 

processes across Member States. 
Questions for debate 

1. How can EHDS governance ensure long-term alignment between 
semantic standards, evolving AI capabilities, and organisational readiness? 
2. Should the EHDS define a Europe-wide methodological baseline for 
“semantic quality monitoring”? 
3. What is the right balance between EU-level prescription and Member 
State autonomy in governing semantic workflows? 

6 Annex: Supporting semi-automated structuring of clinical 
documents into coded data for EEHRxF compliance 

In the European context, these developments intersect with the EEHRxF in several ways: 

• Automated extraction from free text. AI models can identify problems, 
medications, laboratory values and other entities in clinical notes, discharge 
summaries or imaging reports, and map them to EEHRxF elements53,54,55,56. 

• Terminology mapping and normalisation. NLP can assist in mapping local terms 
to standard codes (e.g., LOINC, SNOMED CT) and flag inconsistencies or missing 
codes57,58. 

 
53 Yang  X. et al., “A large language model for electronic health records,” npj Digital Medicine 2022 5:1, vol. 
5, no. 1, pp. 194-, Dec. 2022, https://doi.org/10.1038/s41746-022-00742-2  
54 Jiang-Kells J. et al., “Design and implementation of a natural language processing system at the point of 
care: MiADE (medical information AI data extractor),” BMC Med Inform Decis Mak, vol. 25, no. 1, pp. 365-, 
Oct. 2025, https://doi.org/10.1186/S12911-025-03195-1/TABLES/4  
55 Eguia H. et al., “Clinical Decision Support and Natural Language Processing in Medicine: Systematic 
Literature Review,” J Med Internet Res 2024. https://doi.org/10.2196/55315  
56 Reichenpfader D., H. Müller, and K. Denecke, “A scoping review of large language model based 
approaches for information extraction from radiology reports,” npj Digital Medicine 2024 7:1, vol. 7, no. 1, 
pp. 222-, Aug. 2024, https://doi.org/10.1038/s41746-024-01219-0  
57 Hristov A. et al., “Clinical Text Classification to SNOMED CT Codes using Transformers Trained on 
Linked Open Medical Ontologies,” pp. 519–526, https://doi.org/10.26615/978-954-452-092-2_057  
58 Au Yeung  J. et al., “Natural language processing data services for healthcare providers,” BMC Med 
Inform Decis Mak, vol. 24, no. 1, pp. 356-, Dec. 2024, https://doi.org/10.1186/S12911-024-02713-
X/FIGURES/8  

https://doi.org/10.1038/s41746-022-00742-2
https://doi.org/10.1186/S12911-025-03195-1/TABLES/4
https://doi.org/10.2196/55315
https://doi.org/10.1038/s41746-024-01219-0
https://doi.org/10.26615/978-954-452-092-2_057
https://doi.org/10.1186/S12911-024-02713-X/FIGURES/8
https://doi.org/10.1186/S12911-024-02713-X/FIGURES/8
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• Multilingual support. Multilingual or cross-lingual models can help bridge 
language barriers, supporting translation and coding across EU languages59,60. 
• Quality assurance and compliance. AI can detect missing mandatory fields, 

implausible combinations or data quality issues relative to EEHRxF 
constraints61. 

• AI-assisted FHIR® and EEHRxF conformance testing62. AI can support 
large-scale validation of EHR outputs against EHDS profiles, providing 
automated classification of FHIR® conformance errors, root cause analysis of 
profile violations, and smart recommendations for corrective mappings. 

These capabilities are not speculative; a growing body of research demonstrates the 
potential of AI and GenAI for structuring clinical narratives, though often in narrow 
domains, single institutions, or non-European settings. The maturity and limitations of 
these methods vary substantially across data types and clinical contexts. 

 
59 Gaschi F., X. Fontaine, P. Rastin, and Y. Toussaint, “Multilingual Clinical NER: Translation or Cross-
lingual Transfer?,” Proceedings of the Annual Meeting of the Association for Computational Linguistics, 
pp. 289–311, Jun. 2023, https://doi.org/10.18653/v1/2023.clinicalnlp-1.34  
60 Jo E.,  et al., “Domain and Language adaptive pre-training of BERT models for Korean-English bilingual 
clinical text analysis,” BMC Medical Informatics and Decision Making 2025 25:1, vol. 25, no. 1, pp. 428-, 
Nov. 2025, https://doi.org/10.1186/S12911-025-03262-7  
61 Röchner P. and F. Rothlauf, “Unsupervised anomaly detection of implausible electronic health records: 
a real-world evaluation in cancer registries,” BMC Med Res Methodol, vol. 23, no. 1, pp. 125-, Dec. 2023, 
https://doi.org/10.1186/S12874-023-01946-0/FIGURES/5  
62 See https://al-kindipublishers.org/index.php/jcsts/article/view/9889  

https://doi.org/10.18653/v1/2023.clinicalnlp-1.34
https://doi.org/10.1186/S12911-025-03262-7
https://doi.org/10.1186/S12874-023-01946-0/FIGURES/5
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